Bayes Theorem, Bayesian Stats, Bayes Nets

Kenneth (Kenny) Joseph

Reminders

Corrections due today PA3 grades out early next week Quiz 10 out tonight, due Tuesday night PA4 due tonight Tuesday Chevies Quiz 9 on Thoseday

Bayesian Statistics

1. Set up the full probability model (the joint) (00) = (100) (20)
Condition on observed data (estimate the posterior)
3. Evaluate model fit

@ kennv iose

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

Today

How to set up the model

- DAGs Disected Azyclic Grophs ("Boyeston Networks")
 Relationship to conditional probability
 - Relationship to conditional probability
 - Conditional Independence w/ the Markov Assumption
 - Relationship to causal modeling / causal inference
- Generative stories
- How to estimate posterior (i.e. inference)
 - MAP estimation
 - Simulation

Setting up the model ... <u>Directed Probabilistic Graphical Models</u>

- Bayesian models can be complex
- How do we easily explain them?
 - Directed Probabilistic Graphical Models
 - These are also called Bayesian Networks. But you can use them for even non-Bayesian models.
- **Generative Stories**

• A this is an oversimplification, but not by all that much.

WO WAYS

Generative Stories for the text message example

$$D_{av}$$
 $A_{i,k}$ (ion $Exp(\alpha)$) $M_{av}^{av}(\alpha)$
 $A_{i} \sim Exp(\alpha)$
 $\lambda_{i} \sim Exp(\alpha)$
 $\lambda_{i} \sim Exp(\alpha)$
 $\lambda_{i} \sim DiscreteUniform(1,70)$
 Tr the day i T_{i} then $A = A_{i}$, else
 $A = A_{i}$
 $A_{i} = \{A_{i} = if t < \tau \\ A_{2} = if t \ge t$
 $C_{i} \sim Poisson(\lambda)$
 $C_{i} \sim Poisson(\lambda)$

Grow your own generative story

ar

Graphical models, Generally

<u>http://www.cs.cmu.edu/~mgormley/courses/10601/slides/</u> <u>lecture20-bayesnet.pdf</u>

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Bayesian Networks/

Matt Gormley Lecture 20 Mar. 30, 2022

Bayesian Networks

DIRECTED GRAPHICAL MODELS

Example: CMU Mission Control

WESA
 Morning Edition

Pittsburgh's first mission control center to land at CMU ahead of 2022 lunar rover launch

90.5 WESA | By Kiley Koscinski Published March 29, 2022 at 4:44 PM EDT

Courtesy Of Carnegie Mellon University

Bayesian Network A way to specify a (joint) distribution graphically! $p(X_1, X_2, X_3, X_4, X_5) =$ X_{I} X_3 $p(X_{5}|X_{3})p(X_{4}|X_{2},X_{3})$ $p(X_{3})p(X_{2}|X_{1})p(X_{1})$ X_2 X_{4} X_5 Keth $P(X_1, X_2, X_3, X_4, X_5) - \# parometers!$ p(oll combination) = 25-1 p(Xy |Xa, X3) = # paronelers? - p(Xy=1/Xa=0,X3=0)

- A Bayesian Network is a directed graphical model
- It consists of a graph G and the conditional probabilities P
- These two parts full specify the distribution:
 - 'Qualitative Specification: G
 - Quantitative Specification: P What de plabilities lock

Qualitative Specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data (i.e. structure learning)
 - We simply prefer a certain architecture (e.g. a layered graph)

Quantitative Specification

Example: Conditional probability tables (CPTs) for discrete random variables

Quantitative Specification

Example: Conditional probability density functions (CPDs) for continuous random variables

© Eric Xing @ CMU, 2006-2011

Quantitative Specification

Example: Combination of CPTs and CPDs for a mix of discrete and continuous variables

Observed Variables

• In a graphical model, **shaded nodes** are "**observed**", i.e. their values are given

Familiar Models as Bayesian Networks

Question:

1.

2.

Match the model name to the corresponding Bayesian Network

- Logistic Regression
 - Linear Regression
- 3. Bernoulli Naïve Bayes
- 4. Gaussian Naïve Bayes
- 5. 1D Gaussian

= D(Y)X

Answer:

Practice: Get Distribution from BayesNet

Practice: Get Distribution from BayesNet

Practice: Draw Bayes Net from Specified Distribution

 $p(x_1, x_2, x_3, x_4)$; $p(x, |x_{2}, x_{3}) p(x_{2} | x_{4}) p(x_{3}) p(x_{4})$

@ kenny joseph

Practice: Draw Bayes Net from Specified Distribution

Practice: Draw Models we know! ρ(Θ)= Logistic Regression Linear Regression Ridge Regression (tricky!) $\sum_{i=1}^{n} (y_i - \mu' x_i)^a - \lambda \| u \|_a$ What if we were Boyrsion? N(WXJ) identity motrix P(01D) = P(00) P(0) = N N(WXJ) identity motrix - i~N(0

@ kenny josepł

Graphical Model for text message example

 $\lambda_1 \sim \operatorname{Exp}(\alpha)$ $\lambda_2 \sim \operatorname{Exp}(\alpha)$

 $\tau \sim \text{DiscreteUniform}(1,70)$

$$\lambda = \begin{cases} \lambda_1 & \text{if } t < \tau \\ \lambda_2 & \text{if } t \ge \tau \end{cases}$$

 $C_i \sim \text{Poisson}(\lambda)$

Conditional Independence In Bayes Nets

- The above is read A is conditionally independent of B, given C,
- Intuitively, "telling me something about B gives me no new information if I already know C"

 $\perp \mathcal{B} \mid \mathcal{C}$

- Any examples you can think of?
- Example here: Markov Property

Figure 1.3

Some examples of d-separation covering the three fundamental connections: the *serial connection* (left), the *divergent connection* (centre) and the *convergent connection* (right). Nodes in the conditioning set are highlighted in grey.

The full treatment of conditional independence in Bayes Nets requires a discussion about d-separation

Department of Computer Science and Engineering School of Engineering and Applied Sciences

@_kenny_joseph

Estimating the Posterior - MAP estimation $\mathcal{P}(\mathcal{D} \mid \Theta) = \operatorname{Bin}(\mathcal{D}_{H}, \mathcal{D}_{\tau}; \Theta) = (\mathcal{D}_{H}, \mathcal{D}_{\tau}) \mathcal{O}^{\mathcal{D}_{H}}(1-\theta)^{\mathcal{D}_{\tau}}$ ny = # heads nr= # tails QUIE = Ord max ((D; 0) = O = p(heods) What if we are Bayesian .! WH=1000 M-== 1600 On Beta (MH, MT) a posteriori ("MAR") MOXIMM Department of Computer Science and Engineering 19 @_kenny_joseph

Estimating the Posterior - MAP estimation

0

Estimating the Posterior - Sampling

- Problem w/ MAP
 - Doesn't give us a distribution
 - Doesn't work if we cant do a closed form solution!
 - ^ Intertwined ... hard part is the normalizing constant (knowing the whole probability space)
- Solution: Sampling / Simulation-based approaches
 - https://chi-feng.github.io/mcmc-demo/app.html

What to do once we have the posterior?

Make probabilistic statements about our parameters

Make predictions averaged over ALL models

Does this model actually fit? (a wholeee thing)

Where we are at

 We can use these tools to build complex, interesting, but intuitive interpretable models

- But can be hard to fit!
- And not always super predictive
- Next: deep learning
 - Trade intuition and interpretability for ease of training and predictive power

