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Reminders

JCorrec’rions due today

-@AB grades out early next week
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Bayesian Statistics
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. Set up the full probability model (the joint)P(Dp)‘Me]
¢ Condition on observed data (estimate the posterior)
3. Evaluate model fit a,
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Today

How to set up the model

DAGs
Relationship to conditional probability
Conditional Independence w/ the Markov Assumption
Relationship to causal modeling / causal inference

Generative stories

How to estimate posterior (i.e. inference)
MAP estimation
Simulation
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Setting up the model ...
Directed Probabilistic Graphical Models

Bayesian models can be complex
How do we easily explain them?e

WO Ways
Directed Probabilistic Graphical Models 3
se

These are also called Bayesian Networks. But you can v
them for even non-Bayesian models.

Generative Stories

A this is an oversimplification, but not by all that
much.
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Generahve Storl?‘s for the text message example
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Grow your own generative story
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Graphical models, Generally

= hitp://www.cs.cmu.edu/~mgormley/courses/10601/slides/
lecture?20-bayesnet.pdf
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DIRECTED GRAPHICAL MODELS



Example: CMU Mission Control

90.50E80
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Morning Edition

Pittsburgh's first mission control
center to land at CMU ahead of

2022 lunar rover launch
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90.5 WESA | By Kiley Koscinski

Published March 29, 2022 at 4:44 PM EDT

41



Bayesian Network
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m Bayesian Network
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Definition:
(X)) \\/ on o({¢’
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L — t=1 \/\ /
-
x)

* A Bayesian Network is a directed graphical model

* It consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
—'I’Q,ualitative\\S\Pecification: G
— Quantitative Specification: P
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Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply prefer a certain architecture (e.g. a
layered graph)
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Quantitative Specification

Example: Conditional probability tables (CPTs)
for discrete random variables
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Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

P(a,b,c.d) =
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Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0
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Observed Variables

* In a graphical model, shaded nodes are
“observed”, i.e. their values are given




Familiar Models as Bayesian

Networks
Question: Answer:
Match the model name to
the corresponding Bayesian (v)
Network
1. Logistic Regression () () = ()
2.) Linear Regression O

3. Bernoulli Naive Bayes
4. Gaussian Naive Bayes
5. 1D Gaussian
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Practice: Get Distribution from BayesNet

Y

(a) Fully connected. (b) Not fully connected.
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Practice: Get Distribution from BayesNet
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Practice: Draw Bayes Net from Specified
Distribution




Practice: Draw Bayes Net from Specified
Distribution
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Practice: Draw Models we know! @

-LogistieRegression  + .Y @(6}

NAeerRegressior— 5\
| = Ridge Regression (tricky!)
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Plate Notation
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Graphical Model for text message example

A1 ~ Exp(a)
A ~ Exp(a)

7 ~ DiscreteUniform(1,70)

/1={11 ifr<rz
A ift>1

C; ~ Poisson(4)
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Conditional Independence In Bayes Nets

O

ALBlc, ©® ©
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The above is reodéis conditionally independent of B, ‘Wl”)
ghenl, | | | pe)
Intuitively, “telling me something about B gives me no new
information if | already know C”

Any examples you can think ofe
Example here: Markov Property
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Markov Property vap\e Gt
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, D-separation |
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Figure 1.3

Some examples of d-separation covering the three fundamental connections:
the serial connection (left), the divergent connection (centre) and the con-
vergent connection (right). Nodes in the conditioning set are highlighted in
grey.

= The full freatment of conditional independence in Bayes .
Nets requires a discussion about d-separation
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Eshmahng the Posterior - MAP estimation @
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Estimating the Posterior - MAP estimation
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Estimating the Posterior - Sampling

Problem w/ MAP

Doesn’t give us a distribution
Doesn't work if we cant do a closed form solution!

N Intertwined ... hard part is the normalizing constant (knowing
the whole probability space)

Solution: Sampling / Simulation-based approaches
https://chi-feng.github.io/mcmc-demo/app.html
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What to do once we have the posterior?@

Make probabilistic statements about our parameters

Make predictions averaged over ALL models

Does this model actually fite (a wholeee thing)

q\

22 @_kenny_joseph ,"/{




Where we are at

We can use these tools to build complex, interesting, but
intuitive intferpretable models

But can be hard to fit!

And not always super predictive
Next—deep learning

Trade intuifion and interpretability for ease of training and
predictive power
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